
ISRAEL JOURNAL OF MATHEMATICS ~'8 (1992), 75-83 

A COUNTEREXAMPLE IN COPOSITIVE APPROXIMATION 

BY 

S. P. Zllou 

Department of Mathematics, Statistics and Computing Science 

Dalhousie University, Halifax, Nova Scotia, Canada B3H 3J5 

ABSTRACT 

The present paper gives a converse result by showing that there exists a 

function f E C[_1,1], which satisfies that sgn(x)f(x) > 0 for z E [-I, I], 

such that 

limsup E(°)(f' I.......__~) = +oo, 
~_~ E~(I) 

where E (°) (f, I) is the best approximation of degree n to f by polynomials 

which are copositive with it, that is, polynomials P with P(x)f(x) > 0 

for all x 6 [-I, I], En(f) is the ordinary best polynomial approximation 
of f of degree n. 

1. I n t r o d u c t i o n  

Denote by Cik_l,l] the class of real functions f(x) ,  which have k continuous 

derivatives on the interval [-1,  1], with norm ][f[[ = max{[f(x)] : - 1  < x < 1}, 

C[-1,1] = Cf_1,1], A°(r) the class of real functions which alternate sign r times 

on [-1,  1]. Let Hn the class of algebraic polynomials of degree at most n. 

As usual, let En(f) denote the best approximation to f E C[-1,1] by al- 

gebraic polynomials of degree n, E(°) ( f , r )  the best approximation of f C 

C[-1,1] A A°(r) by polynomials of degree n which are copositive with it, that is, 

polynomials P(x) e IIn with f(x)P(x) >_ 0 for all x • [-1,  1]. Let 

= max {llZ  /(x)ll : x , z  + h • [ -1 ,  1], 0 < h < t } ,  
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where 
k 

A~f(x)=~-~(-1)~-i(~)f(zq-jh). 
j=o 

On the topic of copositive approximation, works [1], [3], [4] investigated the 

Jackson type theorems. The latest result is that for f G C[-1,~1 N A°(r), 

E(°)(f,r) _< Crw(f,n-1), 

where Cr is a constant depending only upon r, which is due to D. Leviatan [1]. 

However, unlike in the general comonotone approximation, in which many 

counterexamples have been established showing that the degree of comono- 

tone approximation is much worse than that of ordinary best approximation, 

in copositive case, we cannot find much information on the relation between 

E(°)(f,r) and E,(f). A very clear fact is that if E(~°)(f,r) is not worse than 

E,(f), that is, E(°)(f, r) = O(En(f)), then we do not need to discuss the Jack- 

son type inequalities anymore, since complete results have been established for 

En(f). For example, if r = 0, for all nonnegative functions f E C[-~,I], it is 

obvious that 

0) < 2E.( /) ,  

we do not need to go further. 

For r > 1, however, a very likely result is that one can find a function f E 

C[-1,1] [7 A°(r) such that 

E~°)(f, r) lim2up E n ( f )  = +co" 

In fact it is enough to show* that there is a function f e C[-1,1] [7 A°(1) such 

that 
E(°)(f, 1) 

lim2uP E . ( f )  = +co" 

This is a conjecture we raised in [6], in which a counterexample in L p space 

for 2 < p < co for r = 0 is given. 

The present paper will prove a converse result in copositive approximation, 

which in particular gives an affirmative answer to the above conjecture. 

* We will give more information about this fact later in Section 3. 
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2. Result  and P r o o f  

THEOREM 1: 

COPOSITIVE APPROXIMATION 77 

There is  a func t ion  I ~ cl_l,,j N A°(1) such that 

E~°)(l, 1) 
lira sup - +c~. 

.--.oo E . ( I )  

Indeed, Theorem 1 can be deduced from the following stronger statement by 

applying Jackson Theorem. 

THEOREM 2: There is a function f E C?_1,1] N A°(1) such that 

E(.°)(/, 1) 
limsup - 1" = +oo. 

n - - • c o  0.)4(f,n- ) 

2:2 
LEMMA: Suppose that a > O, a(x)  = x-~-:~, g(x, a) = xe '~(=), x E ( - a ,  a), then 

Ig'(x,a) - 1[ < C a - 2 x  2, I=1 < a, 

and 

Ig" (x ,a) l  = O(a-2x ) ,  I=1 < a, 

where here and in the sequel, C always denotes an absolute constant which may 

vary from one occurrence to another even in the same line. 

Proof: The idea for proof is the same as that in Lemma 1 of [5]. I 

Proof of Theorem 2: Let C~_ 1,11 be the class of real functions, infinitely differ- 

entiable on [-1, 1], and let 

1, x > O ,  
sgn(x) = 0, x = 0, 

-1 ,  x < 0. 

We begin with construction of a sequence of functions, f , (x ) ,  satisfying 

(1) A(x) e c~l,,l, 

(2) sgn(x)fn(x) > 0 ,  

(3) f n ( X )  - -  X 3 -~- n 5 /2  X r,~ n -29/8, 
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for m = 0, 1, 

(4/ IIf~m)(x)ll = 0(1), 

(5) f ~ ) ( o ) = o ,  

and, for sufficiently large n, 

(6) sgn(x)f~(x) > O, 

Isr. J. Math. 

where A .  ~ Bn means that there is a positive constant M independent of n 

such that  

M-IA, ,  <_ B .  <_ M A . .  

then 

In fact, if we let 

~. (~)  = n - s n g ( ~ , n - 9 / ' )  + x 3 - . - s n x ,  x ~ ( - n - 9 / ' , n - ~ / s ) ,  

By the Lemma, 

and 

.,q~(,T) = .--5/2 (g l (x , . - -g /8)  - 1) -I- 3x 2. 

gL(x) ~ 3X 2 -I- O ( " - l / 4 x  2) 

~ ' ( . )  _> 3x ~ _ o ( . - , / , ~ 2 )  

for x E (-n-91S,n-918). Hence 

and for sufficiently large n, 

~(o)=o, 

~(x) ~ o 

for x E (-n-DI8,n-9/8). Combining this with the fact ~n(O) = O, we get 

sgn(~)~,(~) ~ 0 

for x E (-n-9/a,n-9/a).  By the Lemma again, 
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for x E [0, rt-9/s), or 

C O P O S I T I V E  A P P R O X I M A T I O N  

O"(x) < 6x + O(n-l/41xl) 

for x E ( - n  -9/8, 0]. Thus for sufficiently large n, 

sgn(x)O"(x) > 0 

79 

Evidently, 

(s)  

where N* is a natural number depending on n, and II~, is the class of polynomials 

P(x)  of degree n satisfying 

sgn(~)P(~)  > o 

for x C [-1,  1]. Write 

~0 Z ~0 Zl Q , , ( z )  = dXl qn(x2)dx2. 

Clearly Q.  e II~¢: and, by (5) and (7), 

I[f,, - Qnll -< Ill" - q,,ll < n-4. 

Q~)(0) = 0, j = 0,1, 

which, together with (3) and (7), gives 

(9) On(x) -- x 3 + n-5/2x ~ n -29/8, 

(7) 

such that 

IIf~(x) - q,(x)ll  < 72-4, 

for z E ( -n -e /S ,n -9 /8 ) .  Put 

X - -  n--5/2X, IX] >__ n - - 9 / 8 ,  
f . ( x )  = ~.(x) ,  Ixl < ,~-9/8. 

From the above discussion and direct calcula t ions ,  we can verify (1)-(6). 

Because of (6), applying the result of copositive approximation from [1], we 

can find a polynomial, 

s ' - 2  

q,,(x) = E ajxJ E I'I*N:_2, 
j=o 
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and 

(10) IIQ(. ") II = o(1) 

for m = 0,1. 

Let 

F, (x )  = 2 _ . , ' b  '¢,,~ (~), 
j~l 

Pt(z) = Ft_,(z)  + nTl/4(z 3 - n [Sn  z),  

where {nt} is a subsequence of natural numbers chosen by induction: Choose 

large enough nl satisfying (6), 

(11) rq+, = 2 [n~ s + N,~, + I IF~') l l  s + 1] 

for l = 1, 2 , . . . ,  where Ix] is the greatest integer not exceeding x. 

It is not difficult to see that 

- 1 1 / 4  (12) P[(O) = - n ,  

by (S), and 

(13) _ -31/s 
l i f t  - P~II = n i - ' /411Q. ,  x 3 + n i -5 /2x l l  ~ , ' ,  

by (9). Now (12) and (13) imply that 

(14) n[/Sl lFt  - P'II < CIPI(0)I. 

Let r(x) be any polynomial in H*, (in this case r'(0) > 0). Then (12), together 

with Bernstein's inequality (see [2]) gives us 

(15) IP~'(0)l < IPl(0) - ¢(0)1 < Cntl lP,  - ~ll < c n , ( l l P ,  - F, II + IIF, - ill). 

Combining (13), (14) and (15), for I large enough, we get 

(16) IIF, - ,'II -> C.~/slIr, - P, II >- cn115]4. 

Define 
o o  

j--1 
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It is clear that f E C[1_1,1], sgn(x)f(x) >_ 0 for x E [-1,  1] by (10) and the fact 

Q,~(x) E II~v~. For any r EII*  t, in view of (10), 

I l l ( x )  - , ' (~)11 > IIF~ - " l l  - o - . 

Appl~ng (11) and (16) we have 

I I f ( ~ )  - " ( ~ ) l l  > C ( n g / '  - O(n;4)) > Cng/% 

so that 

(17)  E~.°)(y, 1) ___ c n ; - ' v ' .  

At the same time, due to (9) and (11), 

..(f....) _< +..'"., +..'".,.:') 
oo 

+o( Z; n;',') 
j= /+ ,  

(18) = o(.T ~1/~) + o(.T ~'/") + o(.T'). 

Combining (17) and (18) for sufficiently large I yields that 

E~°')('f' 1) > ",..n~'/~, 
~ , ( f , n ; ' )  - 

and the proof of Theorem 2 is completed. 1 

3. Remark  

Let Tl(f,  z) := f (x)  E C~_1,1] N A°(1) be the function we established in Theo- 

rem 2. Let 

S(TI,z) = T,( f ,2x - 1), z E [0,1], 

T ~ ( f , x )  = S ( T I , ~ ) ,  ~ ~ [ - 1 , 1 ] ;  

evidently, T2(f) e C[-1,1] [7 a ° ( 2 )  • In  a similar way, we have a function T4(f, x) 
:= T~(T2(f) ,~)  e q_~,,] Na°(4). Sow let 

T3(f,z) = T, ( f ,3z /4  + 1/4), 
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then T3(f) • C[-1,,] ~A°(3 ) .  The same discussions are applied to Qnj (x) and 

Pt(x), too. Note that now Tj(Pt, x), j = 1,2,3,4,  have degree at most 4N'z_ 1 

(in the present cases, we also need to change slightly the definition of {nl)). 

Then by the same method in the proof of Theorem 2, we can obtain that for 

r • II4,, N A°(J), 

IITj(F,)  - >- max IT (Ft,x) - -> C n g / ' ,  J = 1,2,3,4. 
1-2/j_<x<_1 

At the same time let p*(x) be the polynomial of best approximation of degree 

nl to f(x). Evidently, 

Ean,(Tj(f)) <_ I l Z j ( f ) -  Tj(p*)II = O(n[3X/s), j - 1,2,3,4.  

Thus we have functions Ti(f) E C[-x,1] N A°(J), J = 1, 2, 3,4, such that 

E(°)(TJ(f)'J) - +0o. 
limsuooP En(Ti(f)) 

The general case of a function T~(f) • C[_1,~] N A°(r)  for which 

lira sup E(°)(Tr( f ) '  r) = +c~ 
n-.~ En(Tr(f)) 

can be treated in a similar way. 
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