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ABSTRACT

The present paper gives a converse result by showing that there exists a
function f € C[_,1}, which satisfies that sgn(z)f(z) > 0 for z € [-1,1],
such that

EQ(f,1)

lim sup = 400,

n—oo  En(f)

where ES,O) (f, 1) is the best approximation of degree n to f by polynomials
which are copositive with it, that is, polynomials P with P(z)f(z) > 0
for all = € [-1,1], En(f) is the ordinary best polynomial approximation
of f of degree n.

1. Introduction

Denote by C[k—l,ll the class of real functions f(z), which have ¥ continuous
derivatives on the interval [~1, 1], with norm | f|| = max{|f(z)|: -1 <z <1},
Claiyy = 0[0—1,1]’ A°(r) the class of real functions which alternate sign r times
on [—1,1]. Let II, the class of algebraic polynomials of degree at most n.

As usual, let E,(f) denote the best approximation to f € C[_;, by al-
gebraic polynomials of degree n, E',(,O)( f,r) the best approximation of f €
Cl-1) N A’(r) by polynomials of degree n which are copositive with it, that is,
polynomials P(z) € II,, with f(z)P(z) > 0 for all z € [-1,1]. Let

wi(f,t) = max {|AKf(z)|| : z,z +h € [-1,1], 0<h <t},
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where
k

Akfta) = -0 () 1o + ).

=0
On the topic of copositive approximation, works [1], [3], [4] investigated the
Jackson type theorems. The latest result is that for f € Cj_y,;1( A(r),

EO(f,r) < Crw(f,n ™),

where C, is a constant depending only upon r, which is due to D. Leviatan [1].

However, unlike in the general comonotone approximation, in which many
counterexamples have been established showing that the degree of comono-
tone approximation is much worse than that of ordinary best approximation,
in copositive case, we cannot find much information on the relation between
ES,O)( f,r) and E,(f). A very clear fact is that if E,(,o)( f,r) is not worse than
E.(f), that is, E,(,o)(f, r) = O(En(f)), then we do not need to discuss the Jack-
son type inequalities anymore, since complete results have been established for
En(f). For example, if r = 0, for all nonnegative functions f € C[_y y, it is
obvious that

EQ(£,0) < 2Ea(f),

we do not need to go further.

For r > 1, however, a very likely result is that one can find a function f €

Cl-1,11 N A°(r) such that

(0)
lim sup —ELE%Q = +4o00.

In fact it is enough to show* that there is a function f € Cj_1 1)) A%(1) such
that )
, E."(f,1)
limsup ———— =+
neco. Enlf)

This is a conjecture we raised in [6], in which a counterexample in L? space

0.

for 2 < p < oo for r = 0 is given.
The present paper will prove a converse result in copositive approximation,

which in particular gives an affirmative answer to the above conjecture.

* We will give more information about this fact later in Section 3.
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2. Result and Proof
THEOREM 1: There is a function f € C[l_m] N A°(1) such that

(0)
lim sup %&;) = +00.

Indeed, Theorem 1 can be deduced from the following stronger statement by

applying Jackson Theorem.

THEOREM 2: There is a function f € Cl_, ;1 A%(1) such that

s E (D) _
oo @a(fyn71)

0.
LEMMA: Suppose that a > 0, o(z) = -:13_2—“7, 9(z,a) = ze*® 1 € (—a,a), then
1¢'(e,0) ~ 1] < Ca?2?, [o] <o,

and
l¢"(2,0)| = O(a™?z), |2| < aq,

where here and in the sequel, C always denotes an absolute constant which may

vary from one occurrence to another even in the same line.
Proof: The idea for proof is the same as that in Lemma 1 of [35]. 1

Proof of Theorem 2: Let 0[031,1] be the class of real functions, infinitely differ-
entiable on [—1,1], and let

1, x>0,
sgn(z)=¢ 0, =z=0,

-1, z<0.

We begin with construction of a sequence of functions, f,(z), satisfying

(1) falz) € Oy 1
(2) sgn(z) fn(z) 2 0,

3)

falz) — 2 + n5/2:1:“ ~n 28
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for m=0,1,

4) 1™ @)l = 0(1),

(5) &m0y =0,

and, for sufficiently large n,

(6) sgn(z)fn(z) 2 0,

where A, =~ B, means that there is a positive constant M independent of n
such that

M™'A, < B, < MA,.
In fact, if we let
u(z) = n~%2g(z,n"8) 4 &% — 0~z g € (=8 n 7908,

then
du(e) =072 (¢'(a,n ") ~ 1) + 35

By the Lemma,
g (z) < 327 + O(n~1/42?)

and
3(z) > 32% — O(n"V/4z?)

for z € (—n~%/8,n=%/%). Hence
gn(o) =0,
and for sufficiently large n,
gu(2) 20
for z € (—n~%/%,n=%/%). Combining this with the fact §,(0) = 0, we get
sgn(z)gn(z) > 0
for z € (—n~%/%,n~%/8). By the Lemma again,

gn(z) > 6z ~ O(n™*|z))
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for z € [0,n%/?), or
gn(2) < 62+ O(n™4|a])

for z € (—n~%/%,0]. Thus for sufficiently large n,
sgn(z)gn(z) 2 0
for z € (—n~%/8 n=9/%). Put

z* — n-5/2z’ Izl Z n—9/8,
fale) = { n(z), |z] < n=0/8,

From the above discussion and direct calculations, we can verify (1)-(6).
Because of (6), applying the result of copositive approximation from [1], we

can find a polynomial,

N:-2
gn(z) = z ajz’ € va;—za

=g

such that

M I£2(2) = gn()l] < 07",

where N}, is a natural number depending on n, and II? is the class of polynomials
P(z) of degree n satisfying
sgn(z)P(z) 2 0

for z € [-1,1]. Write
Qn(z) = / dzy / gn(z2)dz,.
0 0
Clearly Qn € ITy. and, by (5) and (7),

[fn = @ull S IIfr — gull <n™.

Evidently,

(8) QR0 =0, j=0.1,
which, together with (3) and (7), gives

Qn(z)—2* + n=/%z n~2/%,

o~
~

(9) |




80 S. P. ZHOU Isr. J. Math.

and
(10) 1Q§™ 1l = o(1)

form =0,1.
Let

{
Fy(z) =Y n;/*Qu, (2),

i
Pi(z) = Fi_1(z) + n,"1/4(:1:3 - n,—5/2x),

where {n;} is a subsequence of natural numbers chosen by induction: Choose

large enough n; satisfying (6),
(11) miar =2 [} + Ny, + IF0)° +1]

for { = 1,2, -, where [z] is the greatest integer not exceeding z.
It is not difficult to see that

(12) P}(0) = —nj "1/
by (8), and
(13) IFr = Pl = ny 4| Qn, — 2 + 0% 2a| e n3/®

by (9). Now (12) and (13) imply that
(14) n/}||Fy — Pi|| < CIP}(0)].

Let r(z) be any polynomial in II;,, (in this case r'(0) > 0). Then (12), together
with Bernstein’s inequality (see {2]) gives us

(15)  |[P(0)] < |P/(0) = '(O)] < Cryl| P = vl < Cru(|| P = Bl + || Fy — ).
Combining (13), (14) and (15), for ! large enough, we get
(16) VFv—rll 2 Cry®|Fy = Pil > On 0%,

Define -
f@) =Y n;"4Qu;(2).

i=1
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It is clear that f € C[1-1,1]’ sgn(z)f(z) 2 0 for z € [-1,1] by (10) and the fact
Qn(z) € IIy,. For any r € I}, , in view of (10),

'Wﬂ-ﬂﬂmwﬂ—w-o(EI@”ﬁ.
=141
Applying (11) and (16) we have

1(@) = (@)l 2 Cln ™/ = O ) 2 Cn*14,
so that
At the same time, due to (9) and (11),

wi(f,ni) S HEQ U7 407wy (Qui(z) = * 40y 2,n})

+o( 3 ")
I=l+1
(18) =0(n; ")+ 0(n""*) + O(n*).
Combining (17) and (18) for sufficiently large [ yields that

(0)
E"l (f’_ll) Z Cnllls,
“'"4(f, n,; )

and the proof of Theorem 2 is completed. ]

3. Remark
Let Ti(f,z) := f(z) € C[l—l,l] (N A%1) be the function we established in Theo-

rem 2. Let

S’(Tl,z) = T](f, 2z — 1), z € [0, 1],
T2(faz) = S(Tl,zz), TE [_la 1];

evidently, T3(f) € Ci-1,1)1A°(2). In a similar way, we have a function Ty(f, z)
i= Tp(T3(f), z) € Cl-1,)NA%(4). Now let

Ts(f,:t) = T4(f,3z/4 + 1/4),
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then T3(f) € Cj_1,1)(VA’(3). The same discussions are applied to Qn;(z) and
Py(z), too. Note that now T;(Pi,z), j = 1,2,3,4, have degree at most 4N}, |
(in the present cases, we also need to change slightly the definition of {n;}).
Then by the same method in the proof of Theorem 2, we can obtain that for

re H4ﬂl ﬂ AO(])’

IT;F) vl 2| max  (Ti(Fua) = (@) 2 Cnp ™', j=1,2,3,4.

At the same time let p*(z) be the polynomial of best approximation of degree
ny to f(z). Evidently,
Eun (Tj() < ITi(H) = Tl = O(n7 "), §=1,2,3,4.

Thus we have functions Tj(f) € Cj—; 1N A%(), 7 = 1,2,3,4, such that

EQ(Ti(£),5)

lim sup = +4o00.

n—oo  En(T;(f))
The general case of a function T(f) € C(_1 1)1 A%r) for which

. EQ@(),r)
R TEEO)

can be treated in a similar way.
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